Charging Energy Storage Capacitors in Electronic Devices

Ing. Petr Sládek, 2015-MAY-25 www.smishek.com

Abstract

Charging high-capacitance capacitors or supercapacitors in electronic devices during power-on transition requires correct selection of MOSFET or bipolar switch. Energy dissipated within few miliseconds in silicon chip using dissipative charging must be kept lower than destructive energy of the chip.

Model and calculation

Where $i_c(t)$ is immediate charging capacitor current $u_c(t)$ is immediate capacitor voltage. U is supply voltage reached after switch-on transistion.

Total energy dissipated in switch (MOSFET):

$$E_{dis} = \int_{0}^{T} i_{c}(t) (U - u_{c}(t)) dt = U \int_{0}^{T} i_{c}(t) - \int_{0}^{T} i_{c}(t) u_{c}(t) dt$$

Note that $U = \frac{1}{C} \int_{0}^{T} i_{c}(t) dt$ for <u>*T* fully charged C</u> when $u_{c} = U$ or $Q = CU = \int_{0}^{T} i_{c}(t) dt$ is total

charge and therefore $E_{dis} = CU^2 - \int_0^T i_c(t) u_c(t) dt$

Immediate power $i_c(t)u_c(t) = p_c(t)$ is transferred into the capacitor C.

And $\int_{0}^{T} i_{c}(t) u_{c}(t) dt = \frac{1}{2}CU^{2}$ is exactly the energy transferred into fully charged capacitor C.

Dissipated energy in MOSFET (no matter how switched):

$$E_{dis} = CU^2 - \frac{1}{2}CU^2 = \frac{1}{2}CU^2$$

Please consider heat spreading in silicon chip. Rule: slower switching (1-10-100ms) enables better spreading into volume and also in copper drain electrode which results in higher heat dissipation.